### Valorisation of livestock manure into a range of stabilised soil improving materials for environmental and economic sustainability

Berlin, March 4<sup>rd</sup> 2015







Dr. Jennifer Bilbao

Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB





## Introduction

#### Potential of animal manure as phosphorus resource

- ~1800 million tonnes of manure
- P2O5 recovery potential:
  18 million tonnes
- P2O5 consumption in Europe:
  3.1 million tonnes
- Manure management practices
  - Storage, transport and application to soil
  - Treatment: Solid-liquid separation, anaerobic digestion



Livestock density, Source: Eurostat



## Introduction

- Limitation of manure use as nutrient source
  - Nutrient ratio (N:P:K) not balanced for optimal plant use
  - Large agricultural areas needed
  - Excess nutrients and metals in soil (e.g. eutrophication, air pollution)



Source: Burton, C.H. and C. Turner Manure management : Treatment strategies for sustainable agriculture. 2003 (modified)



# The BioEcoSIM concept



- Development of a technology to enable farmers to produce sustainable soil improving products that can be easily handled, transported, and applied.
- Stabilized organic soil amendment
- Mineral fertilizers
- Syngas
- Reclaimed water



Biochar

P-salts

N-salts

- High performance fertilizers on demand for precision farming
- Demonstrate the economic, technological environmental, and social feasibility



### **BioEcoSIM Consortium and Business Model**

- 15 partners from 4 countries
- Project costs:5.2 M Euro
- EC contribution: 3.8 M Euro
- Start: October 2012
- End: September 2016



www.bioecosim.eu





### The BioEcoSIM concept



- 1. Solid-liquid separation and pre-treatment
- 2. Phosphorous precipitation from the liquid fraction
- 3. Drying of the solid fraction with superheated steam (SHS) and biochar production via pyrolysis
- 4. Nitrogen recovery as ammonium sulfate





# The BioEcoSIM concept



#### Potential improvements, impacts and outcomes

- Reduce the pressure on primary raw materials
- Reduce negative environmental impacts in intensive livestock regions (eutrophication, NH<sub>3</sub> and N<sub>2</sub>O emissions)
- Mitigate EU's dependency for P-fertilizers
- Increase water efficiency use in agriculture
- Support European strategies and directives
- Economic benefits for farmers through sales of fertilizer products and less costs for manure disposal





### Results

#### Nutrient balance of conventional pig manure







#### Nutrient distribution in the liquid fraction after separation



- P, Ca and Mg remains mainly in the solid fraction
- To increase concentration in liquid fraction → acidification



# Results



Increase in the nutrient concentration in the liquid fraction by acidification of pig manure



Most of the macronutrients available in the liquid fraction



### **Phosphorus Precipitation Unit**



## **Solid-Liquid-Separation & P-Salts Recovery**

Separation of solids from the liquid fraction to enable a P-recovery as a valuable product salt

| Composition of the P-salt mixture [w.%] |              |     |     |     |     |
|-----------------------------------------|--------------|-----|-----|-----|-----|
| $P_{gesamt}$                            | $N_{gesamt}$ | Mg  | ĸ   | Ca  | Na  |
| 9,2                                     | 2,1          | 6,1 | 1,2 | 5,7 | 0,9 |



particle-free solution



P-salts



## **High Value Products**

P-Salts are excellent fertilizers, even better than mineral fertilizers





- Heavy metal content was beyond all critical values
- Bioassays with P-salts and biochar
  - No inhibiting effects on germination
  - → No negative effects on early plant growth
  - No effects on earthworm mortality



### Outlook



- Commissioning and demonstration of pilot-scale (flow 100 kg/h raw manure)
  - Solid-liquid separation & pre-treatment
  - P-precipitation from liquid fraction
  - Solid fraction: SHSD dryer & pyrolysis
  - N-Recovery via membrane modules



- Economic, Environmental and Social Impact assessment
- Verification of field trials of the BioEcoSIM products



### Acknowledgement

Project BioEcoSIM receives funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 308637

www.bioecosim.eu



### Contact

Dr. Jennifer Bilbao

Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB

Department of Physical Process Technology Group Manager Nutrients Management Nobelstrasse 12, 70569 Stuttgart, Germany Phone +49 711 970-3646 | Fax +49 711 970-3997 jennifer.bilbao@igb.fraunhofer.de www.igb.fraunhofer.de



