

PHORWater

Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater

LIFE12 ENV/ES/000441

Laura Pastor Alcañiz 4th March 2015, Berlin "Circular approaches to phosphorus: from research to deployment"

Université Claude Bernard 🕞 Lyon 1

Consortium DAM, CALAGUA, and LAGEP

Integral Management Model

and reuse from Urban Wastewater

for Phosphorus recovery

LIFE12

ENV/ES

000441

PHORWater LIFE+ project:

"Integral Management Model for Phosphorus Recovery and reuse from Urban Wastewater"

Consortium DAM, CALAGUA, and LAGEP

PHORWater LIFE project:

"Integral Management Model for Phosphorus Recovery and reuse from Urban Wastewater"

Integral Management Model

and reuse from Urban Wastewater

for Phosphorus recovery

LIFE12

ENV/ES

Consortium DAM, CALAGUA, and LAGEP

PHORWater LIFE project:

"Integral Management Model for Phosphorus Recovery and reuse from Urban Wastewater"

Université Claude Bernard (Jp) Lyon 1

Integral Management Model

and reuse from Urban Wastewater

for Phosphorus recovery

LIFE12

ENV/ES

Consortium DAM, CALAGUA, and LAGEP

PHORWater LIFE project:

"Integral Management Model for Phosphorus Recovery and reuse from Urban Wastewater"

Université Claude Bernard (Jp) Lyon 1

Integral Management Model

and reuse from Urban Wastewater

for Phosphorus recovery

LIFE12

ENV/ES

Scarcity of phosphorus (P)

sustainable management of this resource in WWTP

The main objective of **PHORWater** is to demonstrate, at pre-industrial scale, the viability **and sustainability of the correct management of the P** in a WWTP obtaining **struvite by crystallization**.

Integral Management Model

and reuse from Urban Wastewater

for Phosphorus recovery

LIFE12

ENV/ES

NTRODUCTION

Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater

LIFE12 ENV/ES/ 000441

El Cidacos WWTP, Calahorra, Spain

Anaerobic digestion for primary and secondary sludge Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater

LIFE12 ENV/ES/ 000441

23.000 m³/day EBPR (A20 Configuration)

RAPHORWater INTRODUCTION Project Plan and structure

	B.1 Integral management of the WWTP for optimal phosphorus recovery.								
B. Implementation actions	B.2 Desing, contruction and start-up of the crystallization process.								
	B.3 Implmetation on the Phosphorus recovery demonstration pilot plant. Struvite production.								
	3.4 Validation of the obtained struvite as a fertiliser.								
	3.5 Economical feasibility study.								
C. Monitoring of the impact of the project	C.1 Effectiveness of the project actions. Project results monitoring.								
actions	C.2 Project socioeconomical impact.								
D. Communication and dissemination actions	D.1 Communication and dissemination of project results.								
E. Project management	E.1 Project management.								
and monitoring of the	E.2 Networking activities.								
project progress	E.3 After LIFE Communication Plan								

Université Claude Bernard (Jp) Lyon 1

Integral Management Model

for Phosphorus recovery and reuse from Urban Wastewater LIFE12

ENV/ES/ 000441

RAN PHORWater INTRODUCTION Project Plan and structure

Act	ion	Sep-13	0ct-13	Nov-13	Dec-13	Jan-14	Feb-14	Mar-14	Mav-14	Jun-14	Jul-14	Aug-14	Sep-14	0ct-14	Nov-14	Dec-14	Jan-15	Feb-15 Mar-15	Apr-15	May-15	Jun-15	Jul-15	Aug-15	Sep-15	0ct-15	Nov-15	Dec-15	Jan-16 - : : : : : :	10-16	Ann-16	Mav-16	Jun-16	Jul-16	Aug-16	Sep-16
B. Implementation actions	B.1 Integral management of the WWTP for optimal phosphorus recovery.																																		
	B.2 Desing, contruction and start-up of the crystallization																																		
	B.3 Implmetation on the Phosphorus recovery demonstration pilot plant.																																		
	B.4 Validation of the obtained struvite as a fertiliser. B.5 Economical feasibility																																+		
C. Monitoring of the impact of the project actions	study. C.1 Effectiveness of the project actions. Project results monitoring.																																		
	C.2 Project socioeconomical impact.																																		
D. Communication and dissemination actions	D.1 Communication and dissemination of project results.																																		
E. Project management and monitoring of the project progress	E.1 Project management. E.2 Networking activities.																																╞		
	Plan																																		

Integral Management Model

for Phosphorus recovery and reuse from Urban Wastewater LIFE12

ENV/ES/ 000441

Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater LIFE12 ENV/ES, 00441 INTRODUCTION Integral management of the WWTP for optimal P recovery

Performed to determine the type and extent of phosphate fixation throughout the plant and to enhanced the phosphorus recovery

<u>Tasks:</u>

- Characterisation of the water and sludge lines of the WWTP
- Mass balances performance
- Identification of the optimal WWTP operational configuration in order to minimize uncontrolled phosphorus and enhance phosphorus recovery
- Implementation of the optimal operational configuration
- Validation of the new WWTP configuration (correct functioning checking)

Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater INTRODUCTION B2 Design, construction and start-up of the crystallization process

Construction of a struvite crystallizer and its implementation at the WWTP

<u>Tasks:</u>

- Crystallizer and auxiliary elements design
- Control algorithm design and development
- Suppliers search and offers requests
- Phosphorus recovery plant construction and installation
- Validation of the installation (correct functioning checking)

Integral Management Model
for Phosphorus recovery
and reuse from Urban WastewaterLIFE12
ENV/ESV
DOUMLIRESULTS B1: Integral management of WWTPCharacterization of the water and sludge line

- Five analytical campaigns carried out
 - > To determine the P removal efficiency in the water line
 - > To assess the precipitation processes in the sludge line
- Mass balances have been applied in the main elements of the WWTP

R*N***PHORWater**

Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater

RESULTS B1: Integral management of WWTP Characterization of the water and sludge line

Integral Management Model
for Phosphorus recovery
and reuse from Urban WastewaterLIFE12
ENV/ES
000441RESULTS B1: Integral management of WWTPCharacterization of the water and sludge line

- Good P removal efficiency from water (81 to 95%)
- The main phosphorus loss point in the plant was the anaerobic digester (8-12 g of P per kg of sludge treated in the sludge line)
- Only between 20 and 32% of the P entering the sludge line could be available for its recovery.
- The highest P availability (i.e., the highest phosphate concentration) took place in the mixing chamber.

R/V PHORWater

Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater

RESULTS B1: Integral management of WWTP Identification of the optimal WWTP configuration

- The release of P in the digester results from the organic matter degradation and from polyphosphate (Poly-P) hydrolysis.
- The organic matter degradation process that takes place in the anaerobic digester is a consequence of the sludge stabilization and cannot be reduced.
- \triangleright
- However, the release of P from Poly-P hydrolysis in the digester can be reduced by enhancing its release in a previous stage before digestion.
- Optimal configuration:

ELUTRIATION OF THE MIXED SLUDGE CONTAINED IN THE MIXING CHAMBER

R/V PHORWater

Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater

RESULTS B1: Integral management of WWTP Identification of the optimal WWTP configuration

- The proposed sludge line configuration was exhaustively simulated with a software tool (DESASS©) in order to:
 - determine the optimal operation conditions that reduces the P precipitation during the anaerobic digestion
 - increases the P concentration in the effluent of the primary thickener for further P recovery.

del Mediterràneo

Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater

RESULTS B1: Integral management of WWTP Identification of the optimal WWTP configuration

RESULTS B1: Integral management of WWTP Lab-scale crystallization assays

Three lab-scale experiments with this real gravity thickener supernatant were carried out in a 20.6 L crystallization reactor.

RESULTS B1: Integral management of WWTP Lab-scale crystallization assays

Three lab-scale experiments with this real gravity thickener supernatant were carried out in a 20.6 L crystallization reactor.

Main characteristics of the experiments

	Exp. 1	Exp. 2	Exp. 3
рН	8.7	8.7	8.7
HRT (h)	4.35	2.05	1.05
Agitation speed (rpm)	200/300	200	200
Molar ratio Mg/P	1.5	1.6	1.6
Molar ratio N/P	2.3	2.6	2.4

RESULTS B1: Integral management of WWTP Lab-scale crystallization assays

Crystallizing process results for the three experiments

	Exp. 1	Exp. 2	Exp. 3	
HRT (h)	4.35	2.05	1.05	
PO ₄ -P _{influent} (mg/l)	150	134	132	
Total P _{effluent} (mg/l)	13.8	24.1	35.9	
PO ₄ -P _{effluent} (mg/l)	5.9	4.7	5.5	\sum
Precipitation Efficiency (%)	95.8	96.4±0.3	95.8±0.9	$\mathbf{\nabla}$
Recovery Efficiency (%)	89.7	82.1±1.7	72±10	\sum
Struvite production (g struvite/L supernatant treated)	1.1	1.0	0.96	$\mathbf{>}$
Average particle size (µm)	183±59	207±8	213±19	>

2Theta (Coupled TwoTheta/Theta) WL=1,54060

Université Claude Bernard (Lyon 1

Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater LIFE12 ENV/ES/ 00041 RESULTS B1: Integral management of WWTP Lab-scale crystallization assays

R/V PHORWater

Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater LIFE12 ENV/ES/ 000441

RESULTS B2: Design, construction and startup of the crystallizer process

- Flowrate: 20 m³/d.
- In the lab-scale, the reactor works correctly with: 2h<HRT<4h.</p>
- \succ The HRT chosen for the design has been 2 h.
- The reactor is a stirred tank reactor and has been divided in two parts:
 - the reaction zone
 - the settling zone to keep the crystals inside the reactor
- Total volume of 4.4 m³ and a total height of 3 m
- > It is equipped with a **profiled propeller** and four baffles

LIFE12 ENV/ES/ 000441

RESULTS B2: Design, construction and startup of the crystallizer process

LIFE12 ENV/ES 000441

More project information at:

http://www.phorwater.eu

Thank you for you attention

PHORWater

Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater

LIFE12 ENV/ES/000441

Université Claude Bernard (Jp) Lyon 1

