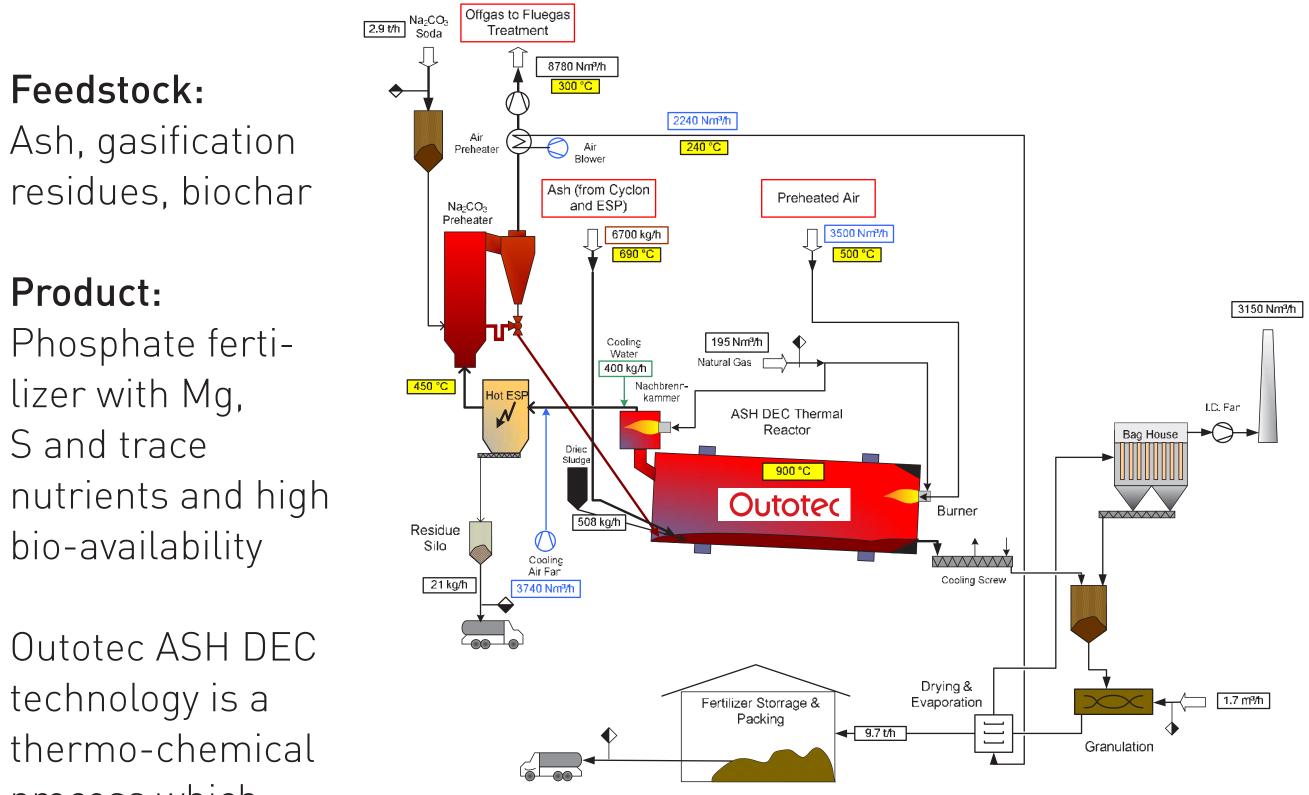
OUTOTEC MODULAR ENERGY AND PHOSPHORUS RECOVERY PROCESSES


LUDWIG HERMANN

SENIOR CONSULTANT ENERGY, OUTOTEC, ludwig.hermann@outotec.com, www.outotec.com

INCINERATION OR GASIFICATION OF PHOSPHORUS RICH WASTE FLOWS

Incineration or gasification is the key to phosphorus recovery with high efficacy = effectiveness + efficiency. Outotec's fluidized bed incineration or gasification techniques generate energy and produce a renewable phosphate concentrate from all phosphorus rich feedstocks.

Feedstock:

Municipal sewage sludge, farmyard manure solids, animal by-products

Products:

Product: Phosphate fertilizer with Mg, S and trace nutrients and high bio-availability

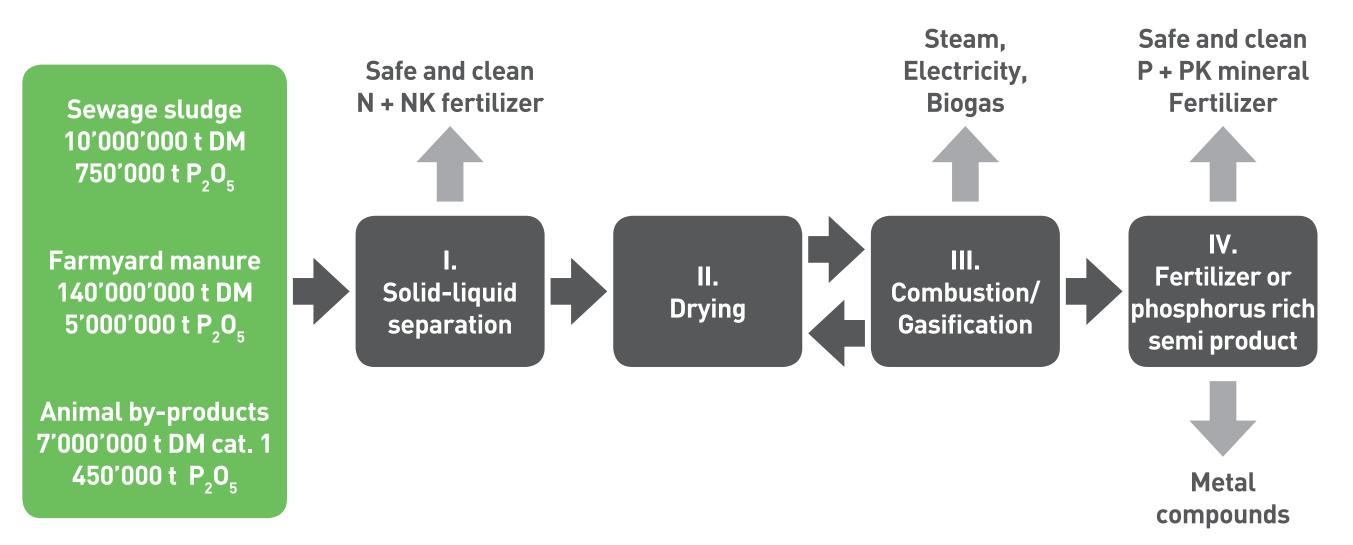
Outotec ASH DEC technology is a thermo-chemical process which

eliminates heavy metals from ash while making nutrients plant available.

How it works:

Ash and alkaline additives are mixed and heated to 800-1000°C in a reactor, where phosphate and additive compounds are cracked to form bio-available phosphate compounds. Pollutants (heavy metals = HM) are forced to the gaseous state to be removed by the air pollution control system.

- Ash borne phosphate concentrate, containing 20-35% P2O5, similar to phosphate concentrates from rock
- Heat and energy carriers (steam, electricity or syngas)


Downstream processing to high value, pollutant free fertilizers depends on the type of original feedstock.

- Low impurity, ash borne concentrates for instance animal by-prod-ucts or chicken litter ashes - are recommended for wet chemical processing by phosphate fertilizer industries
- High impurity, ash borne concentrates for instance sewage sludge or pig manure ashes - are recommended for thermo-chemical processing by the ASH DEC process

Alkaline compound Alkaline HM Ρ Fe Ρ Fe Fe compound Si Si Ca Ca Ca Si Al Al Αι FERTILIZER ASH PROCESS

1000°C

Best economic results and lowest environmental footprint are achieved by vertically integrating the fertilizer manufacturing plant to the sludge or manure incinerator. Integrated plants may share a number of compounds saving CAPEX and may save repeated heating cycles saving energy and OPEX.

ROCK PHOSPHATE & DIFFERENT BIOMASS ASH ANALYSES

Substance	Khouribga rock MA	D ¹⁾ Animal by-products	NL ²⁾ Poultry manure	NL Pig manure 1	NL Pig manure 2	NL WWTP Sludge
P ₂ 0 ₅ %	32.97	32.50	22.71	23.60	22.00	21.30
Ca0 %	51.34	44.10	37.19	17.90	16.80	15.70
Si0 ₂ %	2.35	1.80	3.19	15.70	10.90	21.60
Al ₂ 0 ₃ %	0.40	1.10	0.79	1.70	1.00	10.80
Fe ₂ 0 ₃ %	0.20	1.00	1.05	2.10	11.90	16.30
Mg0 %	0.30	3.00	6.67	13.10	11.00	2.90
Na ₂ 0 %	0.80	7.90	3.59	1.60	1.80	1.00
K ₂ 0 %	0.10	2.90	17.17	6.80	7.70	1.00
S0 ₃ %	1.70	4.30	6.71	6.10	11.70	5.00
Cd mg/kg P ₂ 0 ₅	51.60	0.92	21.09	10.17	12.72	13.76
Pb mg/kg P ₂ 0 ₅	9.10	26.77	475.56	33.89	36.36	943.67
Zn mg/kg P ₂ 0 ₅	700.00	1'415.38	12'091.59	31'355.93	25'000.00	10'239.43

¹⁾ Kley, G., 2004 ²⁾ http://www.biodat.eu/

Sustainable use of Earth's natural resources

POTENTIAL TECHNICAL RENEWABLE ENERGY YIELD OF EU27 MANURE: 583 TWH (2'100'000 TJ) = \sim 3% OF TOTAL ENERGY CONSUMPTION

