

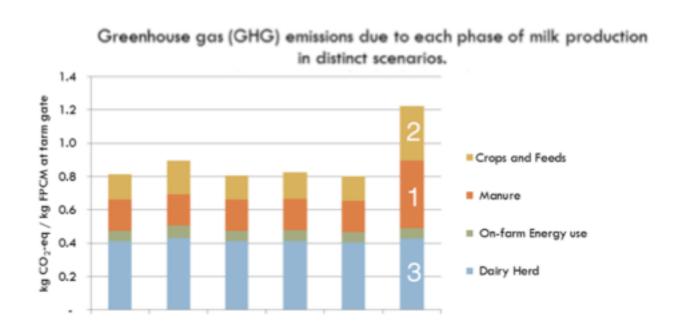
DEMONSTRATIVE MODEL OF CIRCULAR ECONOMY PROCESS IN A HIGH QUALITY DAIRY INDUSTRY

LIFE-DOP - Nutrient management best practices in dairy production for Italian cheese

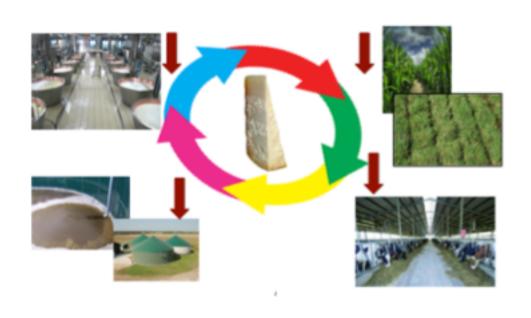
Giuliana D'Imporzano, Daniela Lovarelli, Stefano Garimberti, Alberto Tamburini, Fabrizio Adani

LIFE DOP goals

Frame a production model for Parmigiano Reggiano and Grana Padano that is sustainable and environmental friendly


By proper nutrient management and increased efficieency.

Key phases of dairy production causing environmental impacts


Slurry management

Nutrients use/recovery are key points of sustainable production

What LIFE DOP project aims to improve

- Slurry –manure management
- Fertilization and nutrient management in fields
- Stable management

Forerunner system baseline

Milk

Slurry

40 stables

5550 cows

Total dedicated area 2113 ha

6 Cheese factories

54.300 tons/year of milk

Forerunner system: audit and baseline

Nutrients	N	Р
	ton N/year	ton P/year
Input from feed	783	144
Input from sintetic fertilizers	63	6
Deposition	63	0
Biological fixation	163	0
TOTAL NUTRIENT INPUT	1073	151
Export (milk)	251	48
Export (meat)	37	9
NUTRIENT EXPORT	311	65
Residual nutrient load in system	762	82

Total CO₂ eq emitted due to the milk production 76092 ton/year

Specific emission 1.4 kg CO₂ eq/kg milk

Forerunner system: audit and baseline

- The system has a huge input of nutriets from feeding import (73% of N and more than 96% of P)
- The export with products is very low compared with import
- The local forage system has high sustainability (low chemical N import and high biological fixation)

Improvement I: slurry management

DEMONSTRATIVE MODEL OF CIRCULAR ECONOMY PROCESS IN A HIGH QUALITY DAIRY INDUSTRY

con il contributo dell'Unione Europea life 15 ENV/T/000585

Improvement I: slurry management

Nutrients	N	Р	
	ton N/year	ton P/year	
Input from feed	783	144	China Control
Input from sintetic fertilizers	63	6	A MARINE
Deposition	63	0	
Biological fixation	163	0	
TOTAL NUTRIENT INPUT	1073	151	Total CO ₂ eq emitted due to the milk production
Export (milk)	251	48	72055 ton/year
Export (meat)	37	9	Specific emission
Export (processed digestate)	144	40	1.3 kg CO ₂ eq/kg milk
Ammonium sulphate	62	0	
TOTALE NUTRIENT EXPORT	494	95	
Residual nutrient load in system	579	62	

Improvement I: slurry management

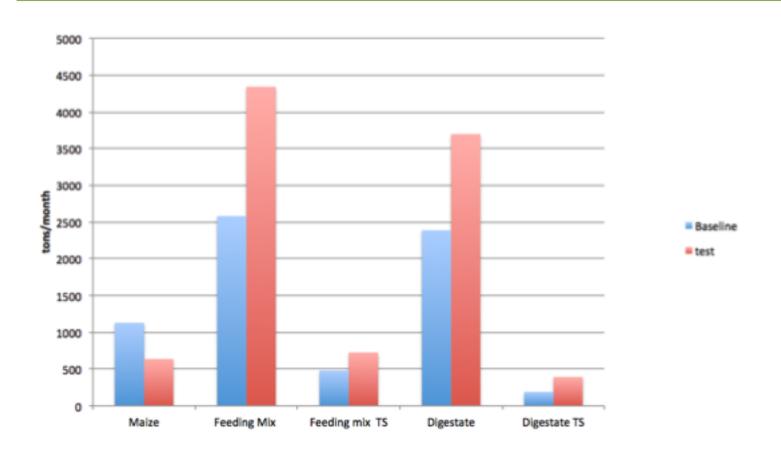
5.3 milio Kwh/year renewable energy

245 Tons/year recovered fertilizers (N and P)

-5.2% CO₂

Slurry and manure derived fraction replace Maize in biogas plant

demonstrative model of circular economy process in a high quality dairy industry con il contributo dell'Unione Europea life 15 ENV/T/000585


numbers

Parameter	Biogas plant 1	Biogas plant 2
Maize substitution	15%	Up to 60%
Energy demand increase	Not detectable	Not detectable
Stability of process Volume of digestate increase	yes negligible	yes 40%
Increase in the amount of nitrogen	1.4 fold icrease	1.7 fold increase

One year mass balance: baseline vs test

Improvement 2: stable management

Detection of the state of art (ration, fodder use, management of slurry)

Evaluation of economic and environmental efficiency

Identification of improvement points and feedback to stables

Stable management baseline

Expected milk production (according to diet)	kg/cow day	33
Actual milk production	Kg/cow day	26

Inefficiency % 21%

Causes of production loss:

Sanitary problems

Reproductive efficiency

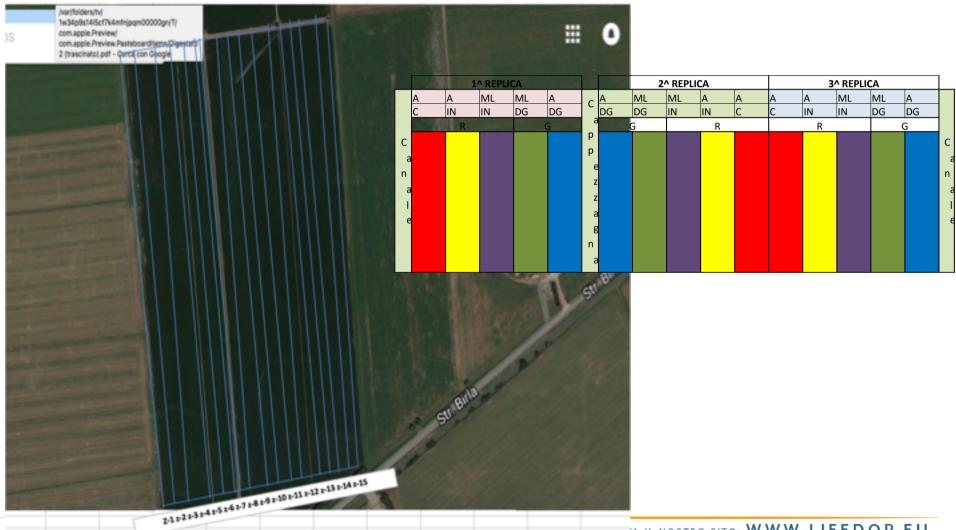
Feeding

Improvement 3: Field management

Virtuous and innovative management of digestate and slurry in the fields: injection and fertigation at maize raise (precise farming)

Strong reduction of chemical fertilizer

Conservative agriculture practices that preserve soil quality:



DEMONSTRATIVE MODEL OF CIRCULAR ECONOMY PROCESS IN A HIGH QUALITY DAIRY INDUSTRY con il contributo dell'Unione Europea life 15 ENV/T/000585

Demofield

Demofield

Good rise of culture

Good omogeneity

No weed problems in minimum tillage



Benefits

Improved air quality: reduction of ammonia emissions into the atmosphere.

Saving of fossil fuels to produce synthetic fertilizers

Better soil quality and biodiversity.

 $Figure\ 2\ -\ Annual\ averaged\ NH_3\ columns\ over\ three\ agricultural\ valleys\ (Clarisse\ et\ al.,\ 2009).$

Extended system: audit and baseline

Nutrients	N	Р
	ton N/year	ton P/year
Input from feed	1,045	218
Input from sintetic fertilizers	172	17
Deposition	86	0
Biological fixation	126	0
TOTAL NUTRIENT INPUT	1430	235
Export (milk)	362	68
Export (meat)	51	12
TOTALE NUTRIENT EXPORT	413	81
Residual nutrient load in system	1016	109

Calculation of the existing environmental impact (verification of current status and LCA calculation)

Measurement of the impact of the sustainable model on a demonstration scale (demofield, field measurements)

Definition of the constraints and good practices to be followed.

Implementation and certification

Thank you for your attention

VISITA IL NOSTRO SITO: WWW.LIFEDOP.EU

info@lifedop.eu
Giuliana.dimporzano@gmail.com