
How does legacy P impact losses to surface waters?

Deltares

Victoria Barcala^{*}, Joachim Rozemeijer, Leonard Osté, Bas Van der Grift, Laurens Gerner, Thilo Behrends

Perspectives for reducing "legacy phosphorus" in agricultural soils

<u>*victoria.barcalapaolillo@deltares.nl</u>
P-TRAP (EU Horizon 2020 Project **813438**)

Introduction

Problem description

Despite in recent years manure/fertilizer application has significantly decreased, and the P surplus is negative, there are still high nutrient values in agricultural catchments that cause eutrophication

The legacy P accumulated in previous decades is one of the causes for the high P values in agricultural areas

Drainage season	P surplus (kg/ha)
2016-2017	-4
2017-2018	2
2018-2019	4
2019-2020	16
2020-2021	-22
Average	-1

Objectives

1. How is the P transported from the soil downstream?

(sediment erosion & adsorption in iron-rich soil layers)

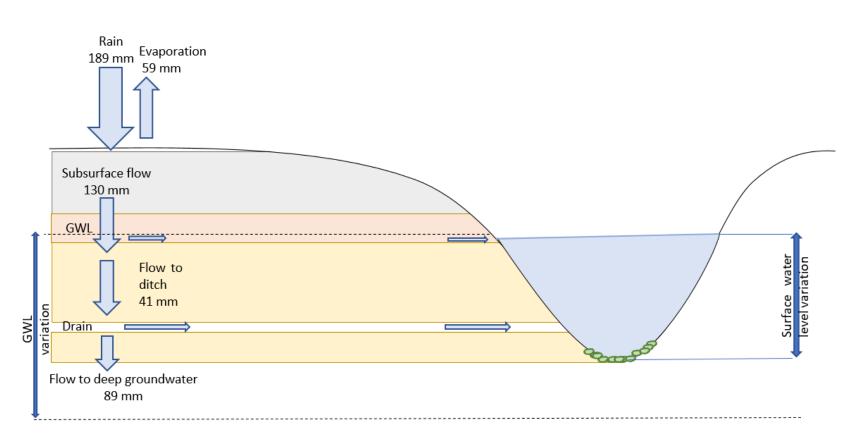
Deltares Introduction – Methods – Results - Conclusions

2

Methods

Site description

- Drained lowland farm
- Intensive agriculture: cattle and rotating crops
- Manure is applied as fertilizer
- Soil: sandy, non-calcareous


The farm drains to a main ditch with a calibrated V-notch in the end

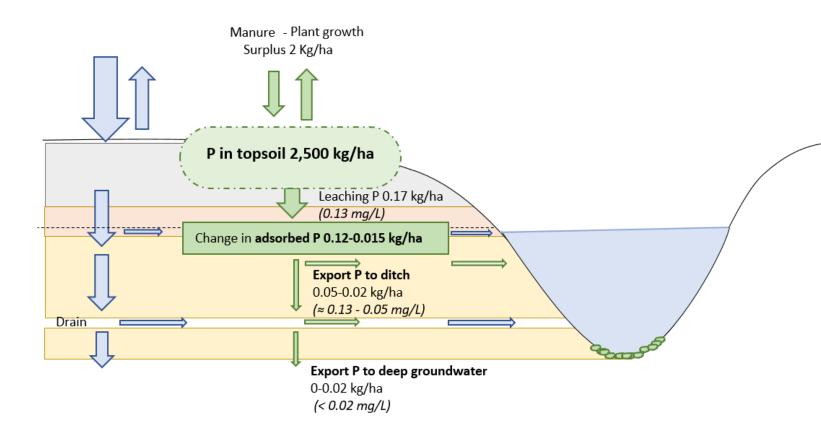
Data collected from April 2018 to 18 April 2019

- A. High-frequency data: the water is pumped from before the V-notch to a monitoring station
- **B.** Spatial distributed data: soil and ditch sediment samples, groundwater samples

Results Water balance season 2018-2019

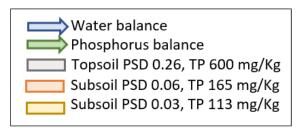
Transport mechanisms: In the field:

- Infiltration and subsurface transport through soil and drains
- No overland flow
- Water transport to deep GW, field located over glacial valley

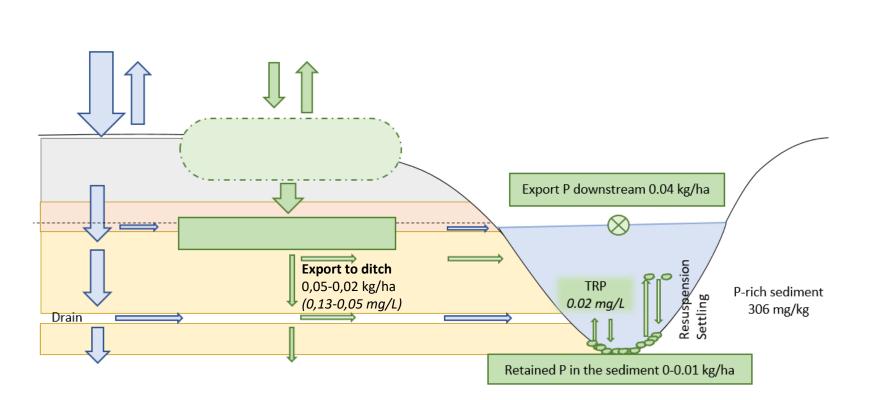

In the ditch:

- Rapid response to rain events, high hydraulic conductivity of the sandy soil
- Ditch dries when GWL decreases below 1,2 m

Water balance Phosphorus balance Topsoil PSD 0.26, TP 600 mg/Kg Subsoil PSD 0.06, TP 165 mg/Kg Subsoil PSD 0.03, TP 113 mg/Kg


Deltares Introduction – Methods – **Results** - Conclusions

Results P balance and transport in the soil season 2018-2019


Transport mechanisms: In the field:

- P surplus almost cero
- Top soil is the main source of P
- P leaches from topsoil
- Leaching P is retained by the subsoil P sorption capacity (higher Fe and Al)
- Low P values in groundwater

Deltares Introduction – Methods – **Results** - Conclusions

Results P balance and transport in the ditch season 2018-2019

Transport mechanisms:

In the ditch:

- Authigenic particle formation, of iron oxides that adsorb or coprecipitate P
- PP settling and resuspension is the main transport mechanism
- Resuspension happens during rain events
- 78% of the P transported of of the catchment is PP
- 0,04 Kg/ha were transported in the 2018-2019 season

Water balance
Phosphorus balance
Topsoil PSD 0.26, TP 600 mg/Kg
Subsoil PSD 0.06, TP 165 mg/Kg
Subsoil PSD 0.03, TP 113 mg/Kg

Deltares Introduction – Methods – **Results** – Conclusions

Conclusions & new data outlook

Legacy P stored in the topsoil

Iron rich subsoil retained leaching P

In the ditch P is transported as particulate P

Implementation of adjustable weirs: the farmer implemented in 2020-2021 two water retention measures. More P was transported per mm rain than before. Our preliminary results show that the groundwater level increased and was many times only 40 cm below the surface. This allowed higher P soil-water concentrations without going though the iron-rich soil layer. More P is attached in sediment particles, more P is transported with particles.

Thank you for your attention!

For more information about this research:

ENVIRONMENTAL RESEARCH LETTERS

PAPER • OPEN ACCESS

Processes controlling the flux of legacy phosphorus to surface waters at the farm scale

Victoria Barcala¹, Joachim Rozemeijer¹, Leonard Osté¹, Bas Van der Grift², Laurens Gerner³ and Thilo Behrends⁴

Published 23 December 2020 • © 2020 The Author(s). Published by IOP Publishing Ltd

Environmental Research Letters, Volume 16, Number 1

Citation Victoria Barcala et al 2021 Environ. Res. Lett. 16 015003

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813438.

victoria.barcalapaolillo@deltares.nl

