Sustainable crop production: decreasing phosphorus rates or splitting phosphorus application?

Vladimir Nosov PhD (Soil Science) Head, Competency Centre JSC APATIT, PHOSAGRO GROUP VVNosov@phosagro.ru

> Co-authors: E. Baksiene, V. Paltanavicius (LAMMS, Lithuania) E. Mescherova (PJSC PHOSAGRO, Russia)

PHOSAGRO°

ESPP webinar on Impacts of reducing "legacy phosphorus" in agricultural soils, 2nd February 2022

Field experiments in Lithuania: Location & soil fertility

LOCATION: Voke Branch, Lithuanian Research Centre for Agriculture and Forestry (LAMMS), Vilnius.

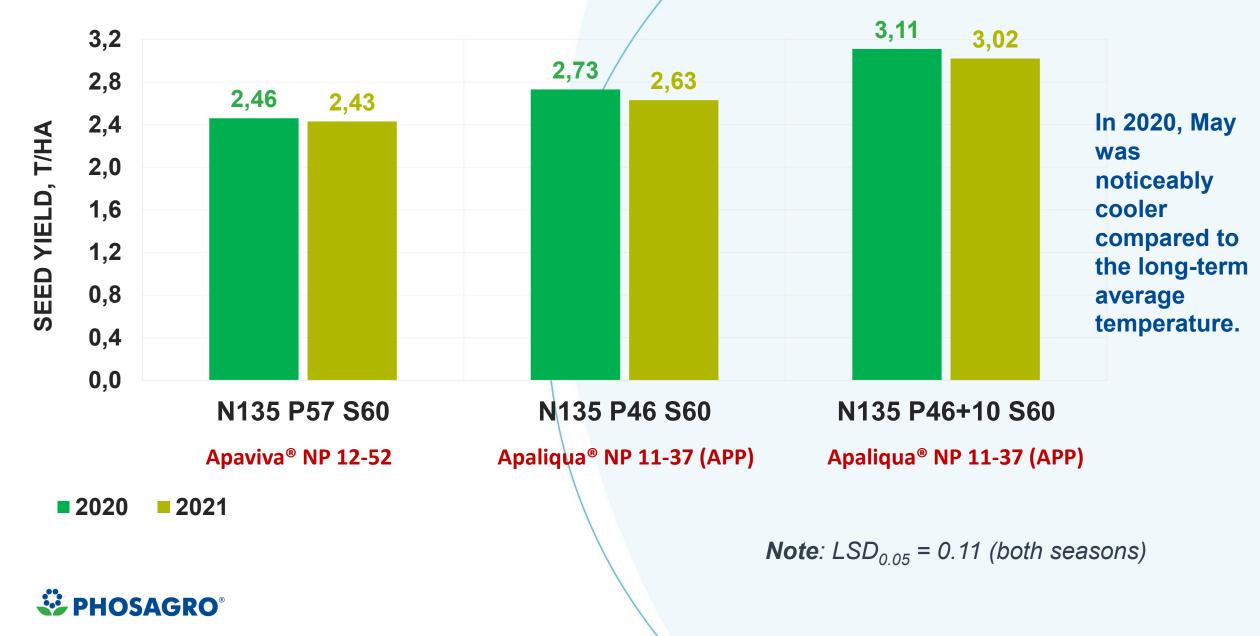
Soddy-podzolic soil (Umbric Albeluvisols Abruptic according to WRB, 2014):

- loamy sand texture,
- low content of organic matter,
- close to neutral soil pH,
- good level of available P in the soil (due to the history of P fertilizer application).

Season	рН _{ксі}	OM, %	Available* P ₂ O ₅	Available * K ₂ O	
			ppm		
2020	6.2	1.86	225	165	
2021	6.0	2.00	210	174	

* Egner-Riem-Domingo method (AL-method)

😵 PHOSAGRO®


Experimental design

No	Treatment	Fertilizer	Physical weight, kg/ha	Method & time of application	
		Apaviva [®] NP 12-52	110	Broadcasted before preplant cultivation	
1	N ₁₃₅ P ₅₇ S ₆₀	Ammonium Sulphate	250	Topdressed at BBCH 20	
		Ammonium Nitrate	200	Topulesseu al BBCH 20	
2 N		Apaliqua [®] NP 11-37 (APP)	125	Sprayed before preplant cultivation	
	$N_{135}P_{46}S_{60}$	Ammonium Sulphate	250	Topdressed at BBCH 20	
		Ammonium Nitrate	200		
3	N ₁₃₅ P ₄₆₊₁₀ S ₆₀	Analigua [®] ND 11 27 (ADD)	125	Sprayed before preplant cultivation	
		Apaliqua [®] NP 11-37 (APP)	28	Foliar applied at BBCH 20	
		Ammonium Sulphate	250	Tondrossod at RRCU 20	
		Ammonium Nitrate	190	Topdressed at BBCH 20	

Note: winter rye was a preceding crop for winter rapeseed (var. Hasting)

Seed yield of winter rapeseed

Economics of nutrient management

No	Treatment	Seed yield, t/ha	Yield value	Fertilizer cost including application	Additional income				
			EUR/ha						
2020									
1	N ₁₃₅ P ₅₇ S ₆₀	2.46	1107.00	122.25	-				
2	N ₁₃₅ P ₄₆ S ₆₀	2.73	1228.50	116.85	127.90				
3	N ₁₃₅ P ₄₆₊₁₀ S ₆₀	3.11	1399.50	122.05	292.70				
2021									
1	N ₁₃₅ P ₅₇ S ₆₀	2.43	1664.55	191.85	-				
2	N ₁₃₅ P ₄₆ S ₆₀	2.63	1801.55	168.55	160.30				
3	N ₁₃₅ P ₄₆₊₁₀ S ₆₀	3.02	2068.70	180.15	415.85				

Note: Seed price (EUR/t): 450 in 2020 and 685 in 2021.

Conclusions

Decreasing P rate by 18% when using liquid Ammonium Polyphosphate fertilizer resulted to yield increase by 8-10% compared to a higher P rate coming from a dry fertilizer.

Maintaining P rate when using liquid Ammonium Polyphosphate fertilizer and splitting P between broadcasting before planting and foliar application in the 3^{rd} decade of May (P₄₆₊₁₀) resulted to yield increase by 24-26% compared to dry P fertilizer.

Liquid Ammonium Polyphosphate fertilizer probably helped to decrease P fixation by the soil having a close to neutral pH thus increasing soil P availability to rapeseed plants.

Soil P uptake by plant roots decreases under low temperatures in spring that may be a case for Northern Europe, especially on podzolic soils. Split P application (soil + foliar) seems to be a reasonable approach for sustainable crop production.

Se PHOSAGRO®

Thank you!

