Crystal Green® as an Organic Fertiliser

ESPP IFOAM Organic Farming December 12th 2017

Michael Daly, Ostara Nutrient Recovery Technologies

© 2016 Ostara Nutrient Recovery Technologies

- Crystal Green[®] is the registered trade mark for Ostara's Pearl[®] process produced struvite.
 - The Pearl process treats the liquor at sewage treatment works (STW)
- The product is magnesium ammonium phosphate hexahydrate, an insoluble slow release phosphate fertiliser MgNH₄PO₄.6H₂O
- Thames Water opened the first European Pearl plant at Slough STW in 2012
- End of Waste status was necessary prior to production so that Crystal Green could achieve product status and be sold as a high quality slow release fertiliser.
 - This was achieved in March 2010

Pearl[®] Nutrient Recovery has a Rapidly Growing Installation Base

- Due to waste water origin, stringent requirements were put in place by the Environment Agency to ensure very low risk to health and the environment
- Consistent analysis of nutrients N, P_2O_5 and MgO in every batch
- Low in PTE's (Potentially Toxic Elements i.e. heavy metals)
- Absence of pathogens E. coli, faecal coliforms and Salmonella
- Data was supplied from independent analyses of commercial production samples to satisfy all these requirement

Heavy Metal (PTE) Comparison

	EU Fertiliser Regulations		Rock	MAP
	Current	Proposed ²	phosphate 28%	52%
Arsenic	60	40	11	7-30
Cadmium	60*	40*	<mark>89</mark>	<mark>0-330</mark>
Chromium – hexavalent	2	2		
Chromium – total	N/A	100	<mark>188</mark>	17
Copper	N/A	600		
Lead	150	120	10	0-10
Mercury	2	1	0.05	
Nickel	120	100	29	7-350
Zinc	N/A	1,500	239	10-3,010

Rock phosphate data ref. Mortvedt, J.J. 2005

Crystal Green mean all sites 2016 QC data *Cd is in mg/kg P_2O_5

¹All values are in mg/kg product except cadmium

DAP 46%	TSP 46%	Crystal Green 28%	
10-23	13-16	0.45	
<mark>7-76</mark>	<mark>11-96</mark>	0.087	
		<0.1	
<mark>55-196</mark>	89	1.03	
		1.60	
1-10	4-13	0.16	
		0.005	
14-48	15-118	0.39	
50-386	61-1,296	2.26	

² Current proposal under the new EU Fertiliser Regulations; subject to change

- Limited organic phosphate fertilizer options when need is shown
- Rock phosphate is one of very few products currently allowed
- Rock phosphate is non-renewable
 - Mined in North Africa, Middle East, Russia, USA
 - Estimates vary as to when this source will run out
- Agronomically rock phosphate is not very efficient –poor availability in soils of pH5.5 or above, only a small fraction of the P is actually available to plants
 - Estimates between 1/20 and 1/3 as effective as superphosphate fertiliser
 - Soils cannot absorb the P released
 - Bolland and Gilkes, 1990 Fertilizer Research 22 79-95

Phosphorus Reserves Are Limited and Highly Concentrated

- Currently Struvite is not listed or allowed in organic farming Annex 1 of EC 889/2008
- Submission via DEFRA to EGTOP (EU Expert Group for Technical Advice on Organic Production) for consideration of struvite to be allowed in organic farming (March 2015)
- EGTOP reported that Struvite can be included in Annex 1
 - It must first be included in the EUFertiliser Regulations
 - New Fertiliser Regulations (2018) will include struvite
 - Product MUST be "hygienic & safe"
 - STRUBIAS Report includes struvite, which would form part of the new regulations
- When EU Fertiliser Regulations are in place with the STRUBIAS bolt-on, Crystal Green[®] struvite can be used in organic farming

- Acid exudates from plant roots (citrate, malate, oxalate) dissolve Crystal Green
 - e.g. Talboys *et al* 2016 Plant and Soil <u>401</u>109-123:
- soil pH
 - Crystal Green is 100% NAC soluble
 - Rock Phosphate is only 75% NAC soluble & has low levels of available P
- Studies comparing Rock Phosphate and Crystal Green to water soluble fertilisers shows benefits of water soluble (TSP) or citrate soluble (Crystal Green) fertilizer over rock phosphate

• Dissolution of Crystal Green is independent of

University of Southampton: Interaction of Growing Roots and Crystal Green Fertilizer

Source: "Imaging the interaction of roots and phosphate fertiliser granules using 4D X-Ray tomography". Ahmed et al., Plant Soil (Springer International Publishing, Switzerland, 2014) 401:125-134

University of Southampton

Localised measurements

 $TSP - 3.7 mm^3$

* Root volume for 5050_01 @ week 12

CG – 22.14mm³

50

Crystal Green Results: Conventional Farming Potato Trial

Crystal Green vs. TSP: marketable potato yield (>45mm) in the UK 2012 & 2014 (average across broadcast/banded applications and two P rates)

Source: Sustainable Arable LINK Project – AHDB 2017

Ongoing work on P sources for **Organic Farming**

- Nurec4org Trial

 - •Fertilizers

 - •3 sources of rock phosphate

 - •Nil P control
 - •Crops
 - •Beans grown in pots using a P-depleted soil (2017)

 - •Maize in the field (2018)
- - •5 year study

 - •Yield and soil health

- •Berge Research Station

 - •3 sources of struvite including Crystal Green
 - •Dung from an organic farm
 - •Conventional fertilisers TSP and DAP

•University of Manitoba

•Rock Phosphate vs. Crystal Green

THANK YOU

Michael Daly, Consultant to Ostara Inc. +44 (0)7984 346010 | mike@theagrologyhouse.co.uk ostara.com | crystalgreen.com

